Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(2-ethyl-1H-imidazol-3-ium) tetrachloridomercurate(II)

Run-Qiang Zhu

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: zhurungiang@163.com

Received 13 December 2011; accepted 23 December 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.008 Å; disorder in main residue; R factor = 0.036; wR factor = 0.064; data-to-parameter ratio = 22.7.

The crystal structure of the title compound, $(C_5H_0N_2)_2$ -[HgCl₄], consists of discrete tetrachloridomercurate dications and discrete 2-methylimidazolium cations. In the complex anion, the mercury cations are coordinated by four chloride anions with distances between 2.4568 (14) and 2.4936 (15) Å in a tetrahedral geometry. In the crystal, the cations and anions are connected by intermolecular N-H···Cl interactions. One C atom of the cations is disordered and was refined using a split model (occupancy ratio 0.75:0.25).

Related literature

For a related structure and background to this study, see: Zhu (2011).

Experimental

Crystal data $(C_5H_9N_2)_2[HgCl_4]$

 $M_r = 536.67$

Triclinic, $P\overline{1}$	V = 880.4 (3) Å ³
a = 7.5784 (15) Å	Z = 2
b = 8.0972 (16) Å	Mo $K\alpha$ radiation
c = 14.661 (3) Å	$\mu = 9.34 \text{ mm}^{-1}$
$\alpha = 92.42 \ (3)^{\circ}$	T = 293 K
$\beta = 97.88 \ (3)^{\circ}$	$0.33 \times 0.28 \times 0.20$ mm
$\gamma = 98.17 \ (3)^{\circ}$	

Data collection

Rigaku SCXmini diffractometer	9149 measured reflections
Absorption correction: multi-scan	4032 independent reflections
(CrystalClear; Rigaku, 2005)	3437 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.216, \ T_{\max} = 0.459$	$R_{\rm int} = 0.044$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	178 parameters
$wR(F^2) = 0.064$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.80 \text{ e } \text{\AA}^{-3}$
4032 reflections	$\Delta \rho_{\rm min} = -0.72 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1N \cdot \cdot \cdot Cl3^{i}$	0.86	2.42	3.227 (4)	157
$N2 - H2N \cdot \cdot \cdot Cl4^{ii}$	0.86	2.37	3.188 (4)	158
$N3-H3N\cdots Cl2$	0.86	2.37	3.220 (4)	171
$N4 - H4N \cdots Cl2^{iii}$	0.86	2.47	3.285 (4)	159

Symmetry codes: (i) x, y + 1, z + 1; (ii) -x + 2, -y + 1, -z + 1; (iii) x, y + 1, z.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97.

This work was supported by Southeast University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2260).

References

Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Zhu, R.-Q. (2011). Acta Cryst. E67, m112.

supplementary materials

Acta Cryst. (2012). E68, m148 [doi:10.1107/S1600536811055371]

Bis(2-ethyl-1H-imidazol-3-ium) tetrachloridomercurate(II)

R.-Q. Zhu

Experimental

A mixture of HgCl₂ (4.26 g, 25 mmol), hydrochloric acid (50 mmol, 36%, 8 ml), and 2 - ethyl imidazole (4.8 g, 50 mmol) in 30 ml water was stirred for 10 minutes at room temperature. On slow evaporation of solvent colourless crystals of the title compound grew within two weeks.

Refinement

Hydrogen atom positions were calculated and allowed to ride on their respective C atoms and N atoms with C–H distances of 0.93–0.97Å and N–H = 0.86 Å, and with $U_{iso}(H)=1.2U_{eq}(C \text{ or } N)$ or or 1.5 $U_{iso}(C)$ for methy H atoms. One C atom is disordered and was refined using a split model and sof of 0.75:0.25. The atom of lower occupant was refined isotropic.

Figures

Fig. 1. The molecular structure of the title compound, with labeling and displacement ellipsoids drawn at the 30% probability level. Intermolecular hydrogen bonding is shown as dashed lines and disordering as full and open bonds..

Fig. 2. Crystal structure of the title compound with intermolecular hydrogen bonding shown as dashed lines. A-atoms not involved in hydrogen bonding are omitted for clarity.

Bis(2-ethyl-1H-imidazol-3-ium) tetrachloridomercurate(II)

Crystal data	
$(C_5H_9N_2)_2[HgCl_4]$	Z = 2
$M_r = 536.67$	F(000) = 508
Triclinic, <i>P</i> 1	$D_{\rm x} = 2.025 {\rm Mg} {\rm m}^{-3}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å
<i>a</i> = 7.5784 (15) Å	Cell parameters from 4032 reflections
b = 8.0972 (16) Å	$\theta = 2.3 - 27.5^{\circ}$
c = 14.661 (3) Å	$\mu = 9.34 \text{ mm}^{-1}$

supplementary materials

$\alpha = 92.42 (3)^{\circ}$
$\beta = 97.88 (3)^{\circ}$
γ = 98.17 (3)°
V = 880.4 (3) Å ³

Data collection

Rigaku SCXmini diffractometer	3437 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\text{int}} = 0.044$
graphite	$\theta_{\text{max}} = 27.5^{\circ}, \theta_{\text{min}} = 3.3^{\circ}$
ω scans	$h = -9 \rightarrow 9$
Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku, 2005)	$k = -10 \rightarrow 10$
$T_{\min} = 0.216, T_{\max} = 0.459$	$l = -19 \rightarrow 19$
9149 measured reflections	2 standard reflections every 150 reflections
4032 independent reflections	intensity decay: none

T = 293 KBlock, colourless $0.33 \times 0.28 \times 0.20 \text{ mm}$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.036$	H-atom parameters constrained
$wR(F^2) = 0.064$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0134P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\text{max}} = 0.001$
4032 reflections	$\Delta \rho_{max} = 0.80 \text{ e } \text{\AA}^{-3}$
178 parameters	$\Delta \rho_{min} = -0.72 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Defense of the location of a location for the location of the	

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0113 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Hg1	0.79183 (2)	0.20862 (2)	0.266500 (12)	0.05040 (10)	
C1	0.8846 (6)	0.7508 (6)	1.0072 (3)	0.0491 (11)	
C2	1.1813 (6)	0.8008 (6)	1.0293 (3)	0.0573 (13)	
H2	1.3004	0.8002	1.0206	0.069*	
C3	1.1239 (7)	0.8776 (7)	1.0993 (3)	0.0585 (13)	
Н3	1.1950	0.9403	1.1492	0.070*	
C4	0.6932 (6)	0.6871 (7)	0.9695 (4)	0.0713 (16)	
H4A	0.6255	0.7802	0.9668	0.086*	
H4B	0.6434	0.6101	1.0116	0.086*	
C5	0.6688 (8)	0.6002 (8)	0.8757 (4)	0.0884 (19)	
H5A	0.7108	0.6775	0.8327	0.133*	
H5B	0.5434	0.5589	0.8567	0.133*	
H5C	0.7365	0.5085	0.8775	0.133*	
C6	0.5651 (7)	0.7388 (7)	0.3880 (4)	0.0593 (13)	
C7	0.2790 (7)	0.7388 (7)	0.3359 (3)	0.0616 (14)	
H7	0.1715	0.7778	0.3157	0.074*	
C8	0.3024 (7)	0.5809 (7)	0.3409 (3)	0.0594 (13)	
H8	0.2153	0.4872	0.3255	0.071*	
C9	0.7550 (11)	0.8057 (10)	0.4345 (7)	0.079 (3)	0.75
H9A	0.8126	0.8820	0.3945	0.095*	0.75
H9B	0.7478	0.8690	0.4912	0.095*	0.75
C9'	0.771 (4)	0.770 (4)	0.3870 (18)	0.066 (8)*	0.25
H9C	0.7969	0.7341	0.3268	0.080*	0.25
H9D	0.8152	0.8883	0.3977	0.080*	0.25
C10	0.8631 (8)	0.6817 (9)	0.4553 (5)	0.099 (2)	
H10A	0.9809	0.7330	0.4838	0.149*	0.75
H10B	0.8729	0.6193	0.3995	0.149*	0.75
H10C	0.8097	0.6078	0.4968	0.149*	0.75
H10D	0.9795	0.7445	0.4775	0.149*	0.25
H10E	0.8776	0.5746	0.4291	0.149*	0.25
H10F	0.7946	0.6664	0.5055	0.149*	0.25
N1	0.9390 (5)	0.8458 (5)	1.0834 (3)	0.0551 (10)	
H1N	0.8690	0.8828	1.1183	0.066*	
N2	1.0314 (5)	0.7232 (5)	0.9728 (3)	0.0530 (10)	
H2N	1.0323	0.6648	0.9225	0.064*	
N3	0.4807 (6)	0.5828 (5)	0.3731 (3)	0.0577 (11)	
H3N	0.5303	0.4948	0.3828	0.069*	
N4	0.4401 (6)	0.8336 (5)	0.3658 (3)	0.0570 (11)	
H4N	0.4583	0.9411	0.3696	0.068*	
Cl1	1.08854 (17)	0.11817 (17)	0.30103 (10)	0.0661 (4)	
Cl2	0.62204 (16)	0.22853 (13)	0.39872 (8)	0.0516 (3)	
C13	0.60382 (15)	-0.01229 (18)	0.15686 (8)	0.0652 (4)	
Cl4	0.84770 (16)	0.47931 (15)	0.19336 (8)	0.0567 (3)	
		. /	. ,		

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Hg1	0.05255 (14)	0.04618 (14)	0.05352 (14)	0.00583 (9)	0.01238 (9)	0.00504 (9)
C1	0.048 (3)	0.043 (3)	0.060 (3)	0.010 (2)	0.014 (2)	0.014 (2)
C2	0.048 (3)	0.058 (3)	0.066 (3)	0.006 (2)	0.010 (3)	0.007 (3)
C3	0.065 (3)	0.051 (3)	0.055 (3)	0.002 (3)	-0.002 (3)	0.009 (3)
C4	0.053 (3)	0.076 (4)	0.083 (4)	0.001 (3)	0.012 (3)	0.011 (3)
C5	0.068 (4)	0.101 (5)	0.088 (4)	0.004 (4)	-0.006 (3)	-0.003 (4)
C6	0.052 (3)	0.051 (3)	0.076 (4)	0.004 (3)	0.016 (3)	0.012 (3)
C7	0.058 (3)	0.065 (4)	0.064 (3)	0.012 (3)	0.011 (3)	0.016 (3)
C8	0.061 (3)	0.055 (3)	0.058 (3)	0.001 (3)	0.001 (3)	0.002 (3)
C9	0.075 (6)	0.044 (5)	0.118 (8)	0.006 (4)	0.013 (6)	0.011 (5)
C10	0.077 (4)	0.105 (6)	0.108 (5)	0.011 (4)	-0.007 (4)	0.002 (4)
N1	0.063 (3)	0.052 (3)	0.057 (3)	0.013 (2)	0.027 (2)	0.010 (2)
N2	0.063 (2)	0.050 (2)	0.048 (2)	0.009 (2)	0.015 (2)	0.0008 (19)
N3	0.074 (3)	0.037 (2)	0.068 (3)	0.019 (2)	0.017 (2)	0.008 (2)
N4	0.071 (3)	0.036 (2)	0.067 (3)	0.007 (2)	0.020 (2)	0.010 (2)
Cl1	0.0564 (7)	0.0618 (8)	0.0825 (9)	0.0211 (6)	0.0061 (7)	0.0030 (7)
Cl2	0.0655 (7)	0.0368 (6)	0.0575 (7)	0.0104 (5)	0.0234 (6)	0.0046 (5)
C13	0.0490 (6)	0.0764 (9)	0.0646 (8)	-0.0031 (6)	0.0088 (6)	-0.0196 (7)
Cl4	0.0670 (7)	0.0450 (7)	0.0610 (7)	0.0097 (6)	0.0157 (6)	0.0124 (6)

Geometric parameters (Å, °)

Hg1—Cl1	2.4568 (14)	C7—C8	1.320 (7)
Hg1—Cl2	2.4811 (13)	C7—N4	1.353 (6)
Hg1—Cl4	2.4885 (14)	С7—Н7	0.9300
Hg1—Cl3	2.4936 (15)	C8—N3	1.366 (6)
C1—N1	1.312 (6)	С8—Н8	0.9300
C1—N2	1.325 (5)	C9—C10	1.402 (10)
C1—C4	1.490 (6)	С9—Н9А	0.9700
C2—C3	1.332 (6)	С9—Н9В	0.9700
C2—N2	1.366 (6)	C9'—C10	1.41 (3)
С2—Н2	0.9300	С9'—Н9С	0.9700
C3—N1	1.373 (6)	С9'—Н9D	0.9700
С3—Н3	0.9300	C10—H10A	0.9600
C4—C5	1.494 (7)	C10—H10B	0.9600
C4—H4A	0.9700	C10—H10C	0.9600
C4—H4B	0.9700	C10—H10D	0.9600
С5—Н5А	0.9600	C10—H10E	0.9601
С5—Н5В	0.9600	C10—H10F	0.9600
С5—Н5С	0.9600	N1—H1N	0.8602
C6—N4	1.317 (6)	N2—H2N	0.8606
C6—N3	1.327 (6)	N3—H3N	0.8598
С6—С9	1.519 (10)	N4—H4N	0.8599
C6—C9'	1.55 (3)		

Cl1—Hg1—Cl2	115.95 (5)	С10—С9'—Н9С	109.3
Cl1—Hg1—Cl4	105.47 (5)	С6—С9'—Н9С	109.3
Cl2—Hg1—Cl4	112.40 (4)	C10—C9'—H9D	109.3
Cl1—Hg1—Cl3	106.12 (5)	С6—С9'—Н9D	109.3
Cl2—Hg1—Cl3	105.11 (4)	H9C—C9'—H9D	108.0
Cl4—Hg1—Cl3	111.73 (5)	C9—C10—C9'	32.0 (9)
N1—C1—N2	106.7 (4)	C9—C10—H10A	109.5
N1—C1—C4	125.2 (4)	C9'—C10—H10A	117.4
N2—C1—C4	128.1 (5)	C9—C10—H10B	109.5
C3—C2—N2	106.8 (4)	C9'—C10—H10B	77.9
С3—С2—Н2	126.6	H10A—C10—H10B	109.5
N2—C2—H2	126.6	С9—С10—Н10С	109.5
C2—C3—N1	106.4 (4)	C9'—C10—H10C	126.8
С2—С3—Н3	126.8	H10A-C10-H10C	109.5
N1—C3—H3	126.8	H10B-C10-H10C	109.5
C1—C4—C5	113.8 (5)	C9—C10—H10D	103.4
C1—C4—H4A	108.8	C9'—C10—H10D	109.5
С5—С4—Н4А	108.8	H10A—C10—H10D	8.0
C1—C4—H4B	108.8	H10B-C10-H10D	107.7
C5—C4—H4B	108.8	H10C-C10-H10D	117.0
H4A—C4—H4B	107.7	С9—С10—Н10Е	137.6
C4—C5—H5A	109.5	С9'—С10—Н10Е	109.5
С4—С5—Н5В	109.5	H10A—C10—H10E	106.2
H5A—C5—H5B	109.5	H10B—C10—H10E	35.0
С4—С5—Н5С	109.5	H10C-C10-H10E	78.5
H5A—C5—H5C	109.5	H10D-C10-H10E	109.5
H5B—C5—H5C	109.5	C9—C10—H10F	83.0
N4—C6—N3	105.3 (4)	C9'—C10—H10F	109.5
N4—C6—C9	123.8 (5)	H10A—C10—H10F	104.5
N3—C6—C9	130.2 (6)	H10B—C10—H10F	136.5
N4—C6—C9'	131.4 (12)	H10C-C10-H10F	31.4
N3—C6—C9'	117.9 (11)	H10D-C10-H10F	109.5
C9—C6—C9'	29.3 (9)	H10E—C10—H10F	109.5
C8—C7—N4	107.3 (5)	C1—N1—C3	110.2 (4)
С8—С7—Н7	126.3	C1—N1—H1N	124.9
N4—C7—H7	126.3	C3—N1—H1N	124.9
C7—C8—N3	106.1 (5)	C1—N2—C2	109.9 (4)
С7—С8—Н8	126.9	C1—N2—H2N	125.1
N3—C8—H8	126.9	C2—N2—H2N	125.0
С10—С9—С6	114.1 (6)	C6—N3—C8	110.5 (4)
С10—С9—Н9А	108.7	C6—N3—H3N	125.1
С6—С9—Н9А	108.7	C8—N3—H3N	124.4
С10—С9—Н9В	108.7	C6—N4—C7	110.8 (4)
С6—С9—Н9В	108.7	C6—N4—H4N	124.7
H9A—C9—H9B	107.6	C7—N4—H4N	124.5
C10—C9'—C6	111.5 (18)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1N····Cl3 ⁱ	0.86	2.42	3.227 (4)	157.
N2—H2N…Cl4 ⁱⁱ	0.86	2.37	3.188 (4)	158.
N3—H3N····Cl2	0.86	2.37	3.220 (4)	171.
N4—H4N…Cl2 ⁱⁱⁱ	0.86	2.47	3.285 (4)	159.

Symmetry codes: (i) *x*, *y*+1, *z*+1; (ii) –*x*+2, –*y*+1, –*z*+1; (iii) *x*, *y*+1, *z*.

Fig. 1

